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Presentation Outline
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• Orion 

• AstroRad

• ISS Matroshka 

• Matroshka AstroRad Radiation Experiment (MARE) on Exploration Mission 1
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• The Orion Multipurpose Crew Vehicle (MPCV) is NASA’s next generation spacecraft 
for human exploration of the solar system

• Exploration Flight Test 1 (EFT-1) successfully executed December 2014

– High eccentricity high altitude orbit to 3600 mi

• EM-1 (Exploration Mission 1) is scheduled for 2020

– 21-42 days mission to Cis-lunar space

• EM-2 is scheduled for 2022

– First crewed flight

• First Gateway element also scheduled for 2022
• Power and Propulsion Element PPE

• EM-3 is scheduled for 2024

– First crewed mission to the lunar surface

Orion MPCV
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Image Credit: NASA
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Orion Ionizing Radiation
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• Orion spacecraft design requirements address both electronic systems (e.g., 
avionics) and crew protection  
– First NASA human spacecraft to implement an Ionizing Radiation Control Plan (IRCP)

• Systematic decomposition of SRD high level requirement “Orion shall meet its functional, performance, and 
reliability requirements during and after exposure to the mission radiation environment”

– First NASA spacecraft on which Crew radiation protection is levied as a design driving requirement

• CxP-70024 Constellation Program Human Systems Integration Requirements

– Spacecraft design “shall provide radiation protection  consistent with ALARA and not to exceed crew 
exposure of E = 150 mSv for design reference environment” 

• SLS-SPEC-159 Cross-Program Design Specification for Natural Environments

– Aug 1972 Solar Particle Event SPE (King parameterization)

• Evolution of radiation protection requirements beyond Orion
– Townsend et al., Life Sciences in Space Research 17 (2018) 32–39

– BFO limit of 250 mGy-equivalent for the design SPE chosen as Oct 1989

– ALARA, storm shelter availability within 30 min of event onset 
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Orion Requirement Verification
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• Crew Radiation Analysis
– Manufacturing quality Orion CAD model

• 20,000 parts & assemblies, 100 GB

• Mass/density and material properties

– Vehicle shielding by ray tracing 

• 4 origin points/crew member, 10k directions

– Body self-shielding from anatomically correct 
human models (~600 organ points)

– Ray-by-ray total converted to 3-material 
equivalents (Al, HDPE, H2O)

– Point dose equivalent calculations by 
deterministic transport software HZETRN

• Definition of design reference environment

– Integrated to obtain organ dose equivalent

– Effective dose calculated w/ tissue weighting 
factors per NCRP Report 132 (2000)
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Cabin Configuration Optimization
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• Optimization of cabin components locations in lieu of flying 
dedicated shielding
– Quasi-exponential decay of radiation exposure w/ shielding areal density

– Consistent with ALARA

– Large number of variables renders closed solution difficult

– Semi-analytical method example: visualization of additional shielding 
location required to achieve predefined target shielding thickness endpoint

SPE response
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Radiation Vest for Astronauts: AstroRad
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• Collaboration between Lockheed Martin Space and StemRad Israel
– Portable radiation protection for astronauts

– Provides preferential protection to stem cell rich organs and tissues

– Designed for flexibility and ergonomics

– Ergonomic evaluation aboard the International Space Station pending (launch on SpX-18 July 2019)
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AstroRad
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ISS Matroshka
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• Series of radiation measurements in radiation therapy phantoms on ISS

– Body internal dose mapping using radiation detectors on the surface of, and inside 
radiotherapy phantoms. Both extra- and intra-vehicular.

MTR-1 539 days
(2004−05)

MTR-2A 337 days
(2006)

MTR-2B 518 days
(2007−09)

MTR-2 KIBO 310 days
(2010−11)

http://www.cirsinc.com/file
/Products/701_706/701%
20706%20ATOM%20PB
%20050418.pdf
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ISS Matroshka
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MTR-1

(2004-05)

MTR-2A

(2006)

MTR-2B

(2007-09)

MTR-2 KIBO 

(2010-11)
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Matroshka AstroRad Radiation Experiment (MARE)
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• Lockheed Martin invited feedback as part of Orion radiation 
protection efforts

• Israel Space Agency (ISA) and the German Aerospace Center (DLR) 
proposed MARE as an international science payload

• NASA approved the proposal in May 2017 and manifested it aboard 
the EM-1 flight.

• MARE description

– Two tissue-equivalent radiation phantoms inside the Orion cabin

– Fitted with active and passive radiation detectors

– One phantom fitted with the StemRad-manufactured AstroRad vest

• MARE is managed by DLR and ISA, with NASA as a co-PI

– Lockheed Martin personnel co-located with Orion support 
development of MARE science objectives and efficient payload 
integration aboard the Orion vehicle
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MARE: CIRS Phantoms
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• ATOM® 702 Female model
– Zohar 35.88 kg / Helga 35.99 kg

– Tissue equivalent material, Artificial bone

– 38 slices with TLD/OSLD holes (3 cm custom grid)

http://www.cirsinc.com/products/modality/33/atom-dosimetry-verification-phantoms
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MARE: CIRS Phantoms Internal
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• CT scan performed on each phantom

• CT scan data are used to generate CAD models

• CAD models are used for AstroRad vest 
customization and radiation analysis
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Bio-modeling
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• Radiation phantom materials

– Soft tissue, bone, lung, brain, and breast (and void)

• CAD Bio-modeling

– Courtesy of W. Paul Segars, Ph.D., Duke University School of 
Medicine

– Outlines organ shapes within the average soft tissue

– Associates TLD grid locations with specific organs, allowing for 
organ dose calculations (analytic prediction & measurements)
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Internal Dose Mapping
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• Passive dosimeters internal to the phantoms
– 3 cm x 3 cm grid

– 6000 TLDs provided by DLR (750 measurement points/phantom, 4 TLDs/measurement point

– 2000-3000 TLDs & OSLDs provided by NASA JSC (1000-1500 /phantom)
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Helga TLD Positions
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Helga: 1392, Zohar: 1383 (DLR: 6000 TLDs, NASA: 2-3000 TLDs/OSLDs)
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Location Radiation Detectors
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– Active detectors for surface (skin) and organ location measurements

– DOSIS Passive Dosimeter Packages (PDPs) for surface (skin) measurements

– PDPs provided by DLR for organ measurements (TLD + CR-39)

# Helga Detector Org # Avis

2 M-42 Compact DLR 4

5 M-42 Split DLR 5

6 CPAD NASA 12

1 EAD-MU-O ESA 2

4 DOSIS PDP DLR 8

5 DLR PDP DLR 5
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DLR M42
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• Silicon Detector
– 1 cm2 area, 300 µm thickness
– Energy range 0.06-20 MeV (Si), 1024 channels
– Autonomous operation
– Launch detection (accelerometer)
– Two versions “Split” and “Compact”
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DLR M42 DUS-NRT and return
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DLR M42 HIMAC Exposure
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DLR M42 MAPHEUS testing
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• Load detector test performed aboard MAPHEUS DLR research rocket

– Max Altitude = 260 km

– Flight Time = 14 min 10 s (6 min microgravity)

– Launched from the European Space and Sounding 

Rocket Range, Kiruna, Sweden (Feb 2018)
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NASA CPAD
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• Crew Personal Active Detector

• ISS Tech Demo currently in progress

• Variable storage rate, no load detector needed

• Direct Ion Storage (Mirion Technologies)

• Mass <35 g, volume = 5.4 x 3.4 x 1.8 cm3

• Battery life >10 months (configuration dependent)

• Display for crew information includes dose rate 
and cumulative dose 

• Additional CPADs to be flown on EM-1 outside of 
MARE
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ESA Active Dosimeter (EAD)
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• Provided by the European Space Agency

– Also referred to as EAD Mobile Unit – Orion 
(MU-O)

• Based upon the existing ISS EAD MU
– ISS EAD system also includes docking station

– MU-O requires upgraded battery lifetime

– Additional instances of the EAD MU-O baselined to 
fly on Orion EM-1 outside of MARE

• Mass 150 g, volume 6x10x3 cm3

• Thin/Thick Silicon Detector

• Instadose®

• RadFET
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DOSIS 3D PDP
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• Dose Distribution Inside the International Space Station - 3D
– DLR lead effort to dose map all the ISS segments (2012 – 2018)

– Passive Dosimeter Package (PDP) includes TLDs + OSLDs + CR-39 PNTDs

– Large international participation includes:

• Technical University Vienna, ATI, Austria

• Institute of Nuclear Physics, IFJ, Krakow, Poland

• Centre for Energy Research, MTA EK, Budapest, Hungary

• Belgian Nuclear Research Center, SCKCEN, Mol, Belgium

• Nuclear Physics Institute, NPI, Prague, Czech Republic

• Oklahoma State University, OSU, Stillwater, USA

• National Institute of Radiological Sciences, NIRS; Chiba, Japan

• NASA JSC, Houston, TX, USA
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Exploration Mission 1 (EM-1)
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• First Orion test flight beyond Earth orbit scheduled for 2020
– Uncrewed flight on Distant Retrograde Lunar Orbit (DRO)

– Solar minimum: intense GCR, low probability of SPE

– Van Allen protons useful as SPE surrogate

– Trajectory through Van Allen belts dependence upon launch date causes ~2x spread in environment (AP-8)
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Exploration Mission 1 (EM-1)
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• Preliminary radiation analysis
– Using MARE and Orion EM-1 CAD models
– Max radiation stressing environment (outbound, AP-8)
– Dose to Si (HZETRN)
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Exploration Mission 1 (EM-1)
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• Preliminary radiation analysis
– Using MARE and Orion EM-1 CAD models
– Max radiation stressing environment (outbound, AP-8)
– Dose to Si (HZETRN)
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Exploration Mission 1 (EM-1)
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• Preliminary radiation analysis
– Using MARE and Orion EM-1 CAD models
– GCR Solar Min (Mar 2009)
– Daily dose to Si (HZETRN)
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Payload Integration Status
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• Successfully completed combined PDR/CDR (Mar 2019)

– Structural analysis, Vibration testing

– Safety certifications ongoing

• Installation validation in the Orion Structural Test Article

– Mass representative mock-ups

• Science activities

– Additional detectors from HERADO / Hellenic space Agency / Thessaloniki University (Greece)

– Environment and Dose Projection Refinements

• Late stow vehicle installation

• EM-1 Flight (2020)
• Post-flight data processing, consolidation and publication 

– AstroRad vest improvements
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Conclusion
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• Orion is the first Exploration architecture component

– MARE is among the first Orion payloads

• International collaboration is critical to successful space exploration

• MARE as example of upcoming science research opportunities

Our goal is to improve astronaut safety and enable Exploration
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Backup
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Orion Design for Crew Radiation Protection
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• Matured throughout the vehicle design
– Early in the program the Master Equipment List included 254 lbm of Polyethylene radiation shield

– Dedicated shielding mass was progressively reduced and ultimately eliminated

– Current baseline relies on design and operational reconfiguration of cabin in case of SPE 



R. Gaza for the MARE team               2019 ASEC, Los Angeles, CA ©2019 Lockheed Martin, StemRad, DLR. All Rights Reserved

33

• 2016 Human In The Loop testing in the NASA JSC Orion med-fidelity mockup

Radiation Shelter Evaluation

Image Credit: NASA Image Credit: NASA
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• Central stowage bays designated as radiation shelter

Nominal Cabin Configuration

Image Credit: NASA
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• Central stowage bays designated as radiation shelter

Cabin Reconfigured for SPE

Image Credit: NASA
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Radiation Analysis Verification by Measurement
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• Exploration Flight Test 1 (EFT-1) opportunity to validate radiation analysis
– High energy re-entry trajectory traversed the core of the Van Allen belts

– Passive (RAMs, OSLDs) and active (BIRD) on-board radiation detectors 

– Measurements correlate well with predictions based on planned trajectory and AP-8 model

EFT-1 Flight Data
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• Dynamic radiation environment

• Radiation transport modeling

• Detector efficiency vs Z/LET

• Body self-shielding

• Internal body dose mapping

• Biological Z/LET susceptibility

• Biological endpoints

Analysis validation continues 
on future flights toward 

improved astronaut safety
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Vibration Test
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Structural Analysis
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